zaterdag 20 december 2014
Gevonden voorwerpen
\(
\large
\eqalign{
& 4\sqrt {4 - p} - \frac{1}
{3}\left( {\sqrt {4 - p} } \right)^3 - p\sqrt {4 - p} = \frac{8}
{3} \cr
& Neem\,\,q = \sqrt {4 - p} \cr
& Er\,\,geldt:p = 4 - q^2 \cr
& 4q - \frac{1}
{3}q^3 - \left( {4 - q^2 } \right) \cdot q = \frac{8}
{3} \cr
& 4q - \frac{1}
{3}q^3 - 4q + q^3 = \frac{8}
{3} \cr
& \frac{2}
{3}q^3 = \frac{8}
{3} \cr
& 2q^3 = 8 \cr
& q^3 = 4 \cr
& q = \root 3 \of 4 \cr
& p = 4 - \left( {\root 3 \of 4 } \right)^2 = 4 - 2\root 3 \of 2 \cr}
\)