dinsdag 9 juni 2020
Nagekomen bericht:-)
\(
\begin{array}{l}
y'' - y' - 2y = 0 \\
y( - 1) = 1 \\
y(1) = 0 \\
k^2 - k - 2 = 0 \\
(k - 2)(k + 1) = 0 \\
k = 2 \vee k = - 1 \\
y = C_1 \cdot e^{2x} + C_2 \cdot e^{ - x} \\
\left\{ \begin{array}{l}
C_1 \cdot e^{ - 2} + C_2 \cdot e = 1 \\
C_1 \cdot e^2 + C_2 \cdot e^{ - 1} = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
C_1 = \frac{{e^2 }}{{1 - e^6 }} \\
C_2 = \frac{{e^5 }}{{e^6 - 1}} \\
\end{array} \right. \\
y = \frac{{e^2 }}{{1 - e^6 }} \cdot e^{2x} + \frac{{e^5 }}{{e^6 - 1}} \cdot e^{ - x} \\
y = - \frac{{e^2 }}{{e^6 - 1}} \cdot e^{2x} + \frac{{e^5 }}{{e^6 - 1}} \cdot e^{ - x} \\
y = \frac{{e^{5 - x} - e^{2x + 2} }}{{e^6 - 1}} \\
\end{array}
\)