Naar aanleiding van
Integreren door substitutie:
\(
\eqalign{
& \int {\frac{1}
{{x\sqrt {x^2 + 5x + 1} }}\,dx} \cr
& stel\,\,\sqrt {x^2 + 5x + 1} = x + t \cr
& noot: \cr
& \sqrt {x^2 + 5x + 1} = x + t \cr
& x^2 + 5x + 1 = (x + t)^2 \cr
& x^2 + 5x + 1 = x^2 + 2tx + t^2 \cr
& 5x + 1 = 2tx + t^2 \cr
& 5x - 2tx = t^2 - 1 \cr
& x(5 - 2t) = t^2 - 1 \cr
& x = \frac{{t^2 - 1}}
{{5 - 2t}} \cr
& dus\,\,x = \frac{{1 - t^2 }}
{{2t - 5}} \cr
& dx + dt = \left[ {\sqrt {x^2 + 5x + 1} } \right]' \cr
& dx + dt = \frac{{2x + 5}}
{{2\sqrt {x^2 + 5x + 1} }} \cr
& 2\sqrt {x^2 + 5x + 1} \,dx + 2\sqrt {x^2 + 5x + 1} dt = 2x + 5 \cr
& 2\sqrt {x^2 + 5x + 1} dt = 2x + 5 - 2\sqrt {x^2 + 5x + 1} \,dx \cr
& dt = \frac{{2x + 5 - 2\sqrt {x^2 + 5x + 1} \,dx}}
{{2\sqrt {x^2 + 5x + 1} }} \cr
& noot: \cr
& t = \sqrt {x^2 + 5x + 1} - x \cr
& 2t = 2\sqrt {x^2 + 5x + 1} - 2x \cr
& dus: \cr
& dt = \frac{{\left( {5 - 2t} \right)\,dx}}
{{2\sqrt {x^2 + 5x + 1} }} \cr
& \frac{{dt}}
{{5 - 2t}} = \frac{{dx}}
{{2\sqrt {x^2 + 5x + 1} }} \cr
& \frac{{2dt}}
{{5 - 2t}} = \frac{{dx}}
{{\sqrt {x^2 + 5x + 1} }} \cr
& invullen: \cr
& \int {\frac{1}
{{x\sqrt {x^2 + 5x + 1} }}\,dx} = \cr
& \int {\frac{1}
{x}} \cdot \frac{1}
{{\sqrt {x^2 + 5x + 1} }}dx = \cr
& \int {\frac{{5 - 2t}}
{{t^2 - 1}}} \cdot \frac{2}
{{5 - 2t}}dt = \cr
& \int {\frac{2}
{{t^2 - 1}}dt} = \cr
& 2\int {\frac{{dt}}
{{t^2 - 1}}} = \cr
& \ln \left( {\frac{{t - 1}}
{{t + 1}}} \right) = \cr
& invullen: \cr
& \ln \left( {\frac{{\left( {\sqrt {x^2 + 5x + 1} - x} \right) - 1}}
{{\left( {\sqrt {x^2 + 5x + 1} - x} \right) + 1}}} \right) = \cr
& \ln \left( {\frac{{5x + 2 - 2\sqrt {x^2 + 5x + 1} }}
{{7x}}} \right) \cr
& conclusie: \cr
& \int {\frac{1}
{{x\sqrt {x^2 + 5x + 1} }}\,dx} = \ln \left( {\frac{{5x + 2 - 2\sqrt {x^2 + 5x + 1} }}
{{7x}}} \right) + C{}_1 \cr
& of \cr
& \int {\frac{1}
{{x\sqrt {x^2 + 5x + 1} }}\,dx} = \ln \left( {\frac{{5x + 2 - 2\sqrt {x^2 + 5x + 1} }}
{x}} \right) + C_2 \cr}
\)
Dat is andere koek...