woensdag 6 april 2022
Nog meer andere koek van hetzelfde
∫dxx√x2+x+1stel:√x2+x+1=x+tnoot:√x2+x+1=x+tx2+x+1=(x+t)2x2+x+1=x2+2tx+t2x+1=2tx+t2x−2tx=t2−1x(1−2t)=t2−1x=t2−11−2tdus:x=1−t22t−5dx+dt=[√x2+x+1]′dx+dt=2x+12√x2+x+12√x2+x+1dx+2√x2+x+1dt=2x+12√x2+x+1dt=2x+1−2√x2+x+1dxdt=2x+1−2√x2+x+1dx2√x2+x+1noot:t=√x2+x+1−x2t=2√x2+x+1−2xdus:dt=(1−2t)dx2√x2+x+1dt1−2t=dx2√x2+x+12dt1−2t=dx√x2+x+1invullen:∫dxx√x2+x+1=2∫1x⋅(12√x2+x+1)dx=2∫1−2tt2−1⋅dt1−2t=2∫dtt2−1=ln(t−1t+1)=invullen:ln((√x2+x+1−x)−1(√x2+x+1−x)+1)=ln(x+2−2√x2+x+13x)conclusie:∫dxx√x2+x+1=ln(x+2−2√x2+x+13x)+C1of∫dxx√x2+x+1=ln(x+2−2√x2+x+1x)+C2