∫1x√x2+5x+1dxstel√x2+5x+1=x+tnoot:√x2+5x+1=x+tx2+5x+1=(x+t)2x2+5x+1=x2+2tx+t25x+1=2tx+t25x−2tx=t2−1x(5−2t)=t2−1x=t2−15−2tdusx=1−t22t−5dx+dt=[√x2+5x+1]′dx+dt=2x+52√x2+5x+12√x2+5x+1dx+2√x2+5x+1dt=2x+52√x2+5x+1dt=2x+5−2√x2+5x+1dxdt=2x+5−2√x2+5x+1dx2√x2+5x+1noot:t=√x2+5x+1−x2t=2√x2+5x+1−2xdus:dt=(5−2t)dx2√x2+5x+1dt5−2t=dx2√x2+5x+12dt5−2t=dx√x2+5x+1invullen:∫1x√x2+5x+1dx=∫1x⋅1√x2+5x+1dx=∫5−2tt2−1⋅25−2tdt=∫2t2−1dt=2∫dtt2−1=ln(t−1t+1)=invullen:ln((√x2+5x+1−x)−1(√x2+5x+1−x)+1)=ln(5x+2−2√x2+5x+17x)conclusie:∫1x√x2+5x+1dx=ln(5x+2−2√x2+5x+17x)+C1of∫1x√x2+5x+1dx=ln(5x+2−2√x2+5x+1x)+C2
Dat is andere koek...