zondag 25 oktober 2020

Ontbinden in factoren

\( \eqalign{ & 3x^2 - 2x - 1 = 0 \cr & 3x^2 + x - 3x - 1 = 0 \cr & x(3x + 1) - (3x + 1) = 0 \cr & (x - 1)(3x + 1) = 0 \cr & x = 1 \vee 3x = - 1 \cr & x = 1 \vee x = - \frac{1} {3} \cr} \)

Rekenen met grote getallen

\( \eqalign{ & x = \sqrt {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }} {{0,035^{10} }}} \right)^3 } \cr & \log (x) = \log \left( {\sqrt {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }} {{0,035^{10} }}} \right)^3 } } \right) \cr & \log (x) = \log \left( {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }} {{0,035^{10} }}} \right)^{\frac{3} {2}} } \right) \cr & \log (x) = \frac{3} {2} \cdot \log \left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }} {{0,035^{10} }}} \right) \cr & \log (x) = \frac{3} {2} \cdot \left( {\log \left( {\left( {30\pi } \right)^{90} \cdot 2000^{14} } \right) - \log \left( {0,035^{10} } \right)} \right) \cr & \log (x) = \frac{3} {2} \cdot \left( {\log \left( {\left( {30\pi } \right)^{90} } \right) + \log \left( {2000^{14} } \right) - \log \left( {0,035^{10} } \right)} \right) \cr & \log (x) = \frac{3} {2} \cdot \left( {90 \cdot \log \left( {\left( {30\pi } \right)} \right) + 14 \cdot \log \left( {2000} \right) - 10 \cdot \log \left( {0,035} \right)} \right) \cr & \log (x) = 135 \cdot \log \left( {\left( {30\pi } \right)} \right) + 21 \cdot \log \left( {2000} \right) - 15 \cdot \log \left( {0,035} \right) \cr & \log (x) \approx 357,6872114 \cr & x \approx 10^{0,6872114} \cdot 10^{357} \cr & x \approx 4,866440301 \cdot 10^{357} \cr} \)

zondag 18 oktober 2020

Opening of asymptoot?

\( \eqalign{f(x) = \frac{{x^3 - 2x^2 - x + 2}} {{x^2 - 4x + 4}}} \)

vrijdag 9 oktober 2020

Is dat wat?:-)

\( \eqalign{ & y = 2 - \frac{1} {{x + 1}} \cr & y(x + 1) = 2(x + 1) - 1 \cr & xy + y = 2x + 1 \cr & - 2x + xy = - y + 1 \cr & x(y - 2) = 1 - y \cr & x = \frac{{1 - y}} {{y - 2}} \cr} \)

Naschrift

Een halve cirkel