\(
\eqalign{
& 3x^2 - 2x - 1 = 0 \cr
& 3x^2 + x - 3x - 1 = 0 \cr
& x(3x + 1) - (3x + 1) = 0 \cr
& (x - 1)(3x + 1) = 0 \cr
& x = 1 \vee 3x = - 1 \cr
& x = 1 \vee x = - \frac{1}
{3} \cr}
\)
zondag 25 oktober 2020
Rekenen met grote getallen
\(
\eqalign{
& x = \sqrt {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right)^3 } \cr
& \log (x) = \log \left( {\sqrt {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right)^3 } } \right) \cr
& \log (x) = \log \left( {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right)^{\frac{3}
{2}} } \right) \cr
& \log (x) = \frac{3}
{2} \cdot \log \left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right) \cr
& \log (x) = \frac{3}
{2} \cdot \left( {\log \left( {\left( {30\pi } \right)^{90} \cdot 2000^{14} } \right) - \log \left( {0,035^{10} } \right)} \right) \cr
& \log (x) = \frac{3}
{2} \cdot \left( {\log \left( {\left( {30\pi } \right)^{90} } \right) + \log \left( {2000^{14} } \right) - \log \left( {0,035^{10} } \right)} \right) \cr
& \log (x) = \frac{3}
{2} \cdot \left( {90 \cdot \log \left( {\left( {30\pi } \right)} \right) + 14 \cdot \log \left( {2000} \right) - 10 \cdot \log \left( {0,035} \right)} \right) \cr
& \log (x) = 135 \cdot \log \left( {\left( {30\pi } \right)} \right) + 21 \cdot \log \left( {2000} \right) - 15 \cdot \log \left( {0,035} \right) \cr
& \log (x) \approx 357,6872114 \cr
& x \approx 10^{0,6872114} \cdot 10^{357} \cr
& x \approx 4,866440301 \cdot 10^{357} \cr}
\)
zaterdag 24 oktober 2020
zondag 18 oktober 2020
Opening of asymptoot?
\(
\eqalign{f(x) = \frac{{x^3 - 2x^2 - x + 2}}
{{x^2 - 4x + 4}}}
\)
woensdag 14 oktober 2020
maandag 12 oktober 2020
zondag 11 oktober 2020
vrijdag 9 oktober 2020
Is dat wat?:-)
\(
\eqalign{
& y = 2 - \frac{1}
{{x + 1}} \cr
& y(x + 1) = 2(x + 1) - 1 \cr
& xy + y = 2x + 1 \cr
& - 2x + xy = - y + 1 \cr
& x(y - 2) = 1 - y \cr
& x = \frac{{1 - y}}
{{y - 2}} \cr}
\)
Naschrift
Abonneren op:
Posts (Atom)