\(
\eqalign{
& x = \sqrt {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right)^3 } \cr
& \log (x) = \log \left( {\sqrt {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right)^3 } } \right) \cr
& \log (x) = \log \left( {\left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right)^{\frac{3}
{2}} } \right) \cr
& \log (x) = \frac{3}
{2} \cdot \log \left( {\frac{{\left( {30\pi } \right)^{90} \cdot 2000^{14} }}
{{0,035^{10} }}} \right) \cr
& \log (x) = \frac{3}
{2} \cdot \left( {\log \left( {\left( {30\pi } \right)^{90} \cdot 2000^{14} } \right) - \log \left( {0,035^{10} } \right)} \right) \cr
& \log (x) = \frac{3}
{2} \cdot \left( {\log \left( {\left( {30\pi } \right)^{90} } \right) + \log \left( {2000^{14} } \right) - \log \left( {0,035^{10} } \right)} \right) \cr
& \log (x) = \frac{3}
{2} \cdot \left( {90 \cdot \log \left( {\left( {30\pi } \right)} \right) + 14 \cdot \log \left( {2000} \right) - 10 \cdot \log \left( {0,035} \right)} \right) \cr
& \log (x) = 135 \cdot \log \left( {\left( {30\pi } \right)} \right) + 21 \cdot \log \left( {2000} \right) - 15 \cdot \log \left( {0,035} \right) \cr
& \log (x) \approx 357,6872114 \cr
& x \approx 10^{0,6872114} \cdot 10^{357} \cr
& x \approx 4,866440301 \cdot 10^{357} \cr}
\)