woensdag 6 november 2019

Naschrift

\( \eqalign{ & f(x) = \ln \left( {4\left( {3x - x^2 } \right)^{ - 2} } \right) \cr & f(x) = \ln (4) + \ln \left( {\left( {3x - x^2 } \right)^{ - 2} } \right) \cr & f(x) = \ln (4) - 2\ln \left( {3x - x^2 } \right) \cr & f'(x) = \frac{{ - 2}} {{3x - x^2 }} \cdot \left( {3 - 2x} \right) \cr & f'(x) = \frac{{ - 6 + 4x}} {{3x - x^2 }} \cr & f'(x) = \frac{{4x - 6}} {{3x - x^2 }} \cr} \)