zaterdag 4 mei 2019
Opgave 2
\(
\begin{array}{l}
\left\{ \begin{array}{l}
x^2 + xy = 20 \\
y^2 + xy = 30 \to x = \frac{{30 - y^2 }}{y} \\
\end{array} \right. \\
\downarrow \\
\left( {\frac{{30 - y^2 }}{y}} \right)^2 + \frac{{30 - y^2 }}{y} \cdot y = 20 \\
\frac{{30(30 - y^2 )}}{{y^2 }} = 20 \\
900 - 30y^2 = 20y^2 \\
50y^2 = 900 \\
y^2 = 45 \\
y = - 3\sqrt 2 \vee y = 3\sqrt 2 \\
\left\{ \begin{array}{l}
x = - 2\sqrt 2 \\
y = - 3\sqrt 2 \\
\end{array} \right. \vee \left\{ \begin{array}{l}
x = 2\sqrt 2 \\
y = 3\sqrt 2 \\
\end{array} \right. \\
xy = 12 \\
\end{array}
\)