zaterdag 4 mei 2019
Opgave 2
\(
\begin{array}{l}
 \left\{ \begin{array}{l}
 x^2  + xy = 20 \\ 
 y^2  + xy = 30 \to x = \frac{{30 - y^2 }}{y} \\ 
 \end{array} \right. \\ 
  \downarrow  \\ 
 \left( {\frac{{30 - y^2 }}{y}} \right)^2  + \frac{{30 - y^2 }}{y} \cdot y = 20 \\ 
 \frac{{30(30 - y^2 )}}{{y^2 }} = 20 \\ 
 900 - 30y^2  = 20y^2  \\ 
 50y^2  = 900 \\ 
 y^2  = 45 \\ 
 y =  - 3\sqrt 2  \vee y = 3\sqrt 2  \\ 
 \left\{ \begin{array}{l}
 x =  - 2\sqrt 2  \\ 
 y =  - 3\sqrt 2  \\ 
 \end{array} \right. \vee \left\{ \begin{array}{l}
 x = 2\sqrt 2  \\ 
 y = 3\sqrt 2  \\ 
 \end{array} \right. \\ 
 xy = 12 \\ 
 \end{array}
\)