Processing math: 100%
De exacte waarde van sin(36°)
sin(36∘)=√10−2√54sin(36∘)↓x=36∘5x=180∘2x+3x=180∘↓sin(α)=sin(180∘−α)sin(2x)=sin(3x)2sin(x)cos(x)=3sin(x)−4sin3(x)↓cos(x)=√1−sin2(x)2sin(x)√1−sin2(x)=3sin(x)−4sin3(x)↓u=sin(x)2u√1−u2=3u−4u3(2u√1−u2)2=(3u−4u3)24u2(1−u2)=9u2−24u4+16u64u2−4u4=9u2−24u4+16u616u6−20u4+5u2=0u2(16u4−20u2+5)=0u2=0(v.n.)∨16u4−20u2+5=016u4−20u2+5=014(64u4−80u2)+5=014((8u2−5)2−25)+5=0((8u2−5)2−25)+20=0(8u2−5)2=58u2−5=±√58u2=5±√5u2=5±√58u2=5−√58∨u2=5+√58(v.n.)u=−√5−√58(v.n.)∨u=√5−√58u=√5−√58u=√10−2√516u=√10−2√54