vrijdag 13 augustus 2021
Hoe moeilijk kan 't zijn?
\(
\eqalign{
& f(x) = x\root 3 \of {(x^3 + 3x)^2 } \cr
& f(x) = x\left( {x{}^3 + 3x} \right)^{\frac{2}
{3}} \cr
& f'(x) = 1 \cdot \left( {x{}^3 + 3x} \right)^{\frac{2}
{3}} + x \cdot \frac{2}
{3}\left( {x{}^3 + 3x} \right)^{ - \frac{1}
{3}} \cdot \left( {3x^2 + 3} \right) \cr
& f'(x) = \left( {x{}^3 + 3x} \right)^{\frac{2}
{3}} + \frac{{2x\left( {3x^2 + 3} \right)}}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} \cr
& f'(x) = \left( {x{}^3 + 3x} \right)^{\frac{2}
{3}} \cdot \frac{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} + \frac{{2x\left( {3x^2 + 3} \right)}}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} \cr
& f'(x) = \frac{{3(x{}^3 + 3x)}}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} + \frac{{2x\left( {3x^2 + 3} \right)}}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} \cr
& f'(x) = \frac{{3x^3 + 9x + 6x^3 + 6x}}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} \cr
& f'(x) = \frac{{9x^3 + 15x}}
{{3\left( {x{}^3 + 3x} \right)^{\frac{1}
{3}} }} \cr
& f'(x) = \frac{{3x^3 + 5x}}
{{\root 3 \of {x{}^3 + 3x} }} \cr}
\)
Abonneren op:
Posts (Atom)