\( \eqalign{ & g(x) = \frac{{\sin (x)}} {{\frac{1} {2} - \cos (x)}} \cr & g'(x) = \frac{{\cos (x)\left( {\frac{1} {2} - \cos (x)} \right) - \sin (x) \cdot \sin (x)}} {{\left( {\frac{1} {2} - \cos (x)} \right)^2 }} \cr & g'(x) = \frac{{\frac{1} {2}\cos (x) - \cos ^2 (x) - \sin ^2 (x)}} {{\left( {\frac{1} {2} - \cos (x)} \right)^2 }} \cr & g'(x) = \frac{{\frac{1} {2}\cos (x) - 1}} {{\left( {\frac{1} {2} - \cos (x)} \right)^2 }} \cr} \)
Of ook...
\( \eqalign{ & g(x) = \frac{{2 \cdot \sin (x)}} {{1 - 2 \cdot \cos (x)}} \cr & g'(x) = \frac{{2 \cdot \cos (x)(1 - 2 \cdot \cos (x)) - 2 \cdot \sin (x) \cdot 2 \cdot \sin (x)}} {{\left( {1 - 2 \cdot \cos (x)} \right)^2 }} \cr & g'(x) = \frac{{2 \cdot \cos (x) - 4 \cdot \cos ^2 (x) - 4 \cdot \sin ^2 (x)}} {{\left( {1 - 2 \cdot \cos (x)} \right)^2 }} \cr & g'(x) = \frac{{2 \cdot \cos (x) - 4}} {{\left( {1 - 2 \cdot \cos (x)} \right)^2 }} \cr} \)
Wat zal ik er van denken?:-)
Wat zal het programma er over denken?:-)
Ik zeg niks...:-)