vrijdag 9 november 2018
Proof en pudding
\(
\eqalign{
& \frac{{\cos \left( u \right) + \sin \left( u \right)}}
{{\cos \left( u \right) - \sin \left( u \right)}} = \frac{{1 + \sin (2u)}}
{{\cos (2u)}} \cr
& \frac{{\left( {\cos \left( u \right) + \sin \left( u \right)} \right)\left( {\cos \left( u \right) - \sin \left( u \right)} \right)}}
{{\left( {\cos \left( u \right) - \sin \left( u \right)} \right)^2 }} = \frac{{1 + \sin (2u)}}
{{\cos (2u)}} \cr
& \frac{{\cos ^2 \left( u \right) - \sin ^2 \left( u \right)}}
{{\cos ^2 (u) - 2\sin (u)\cos (u) + \sin ^2 (u)}} = \frac{{1 + \sin (2u)}}
{{\cos (2u)}} \cr
& \frac{{\cos \left( {2u} \right)}}
{{1 - \sin (2u)}} = \frac{{1 + \sin (2u)}}
{{\cos (2u)}} \cr
& \cos ^2 (2u) = 1 - \sin ^2 (2u) \cr
& \sin ^2 (2u) + \cos ^2 (2u) = 1 \cr
& {\text{Klopt!}} \cr}
\)