dinsdag 29 november 2016

Goniometrische vergelijkingen

In hoofdstuk 8 van Getal & Ruimte van HAVO wiskunde B leren leerlingen o.a. om goniometrische vergelijkingen op te lossen. Zie goniometrische vergelijkingen voor een overzicht. Dat valt nog niet eens mee. Maar deze week heb ik toch weer 's iets ontdekt dat mogelijkerwijs kan helpen.

In het SE stond deze opgave:

Opgave 6
Geef de exacte waarden van x met \(0 \leqslant x \leqslant 2\pi \)
  1. \(\cos (x) = \frac{1}{2}\sqrt 3\)
  2. \(\sin^2 (x + \frac{1}{3}\pi ) = 1\)
  3. \(\sin (\pi x) = \frac{1}{2}\sqrt 3\)
Het idee is dan dat leerlingen dat oplossen met de eenheidscirkel. Dat is nog steeds het plan, maar je kunt natuurlijk ook je GR inzetten!

Het idee!?

Voor het berekenen van de hoek zet je je GR in. Dat ziet er dan (bijvoorbeeld) zo uit:



Je hebt dan al de helft van het antwoord te pakken! Met de eenheidscirkel en de cosinuslijn kan je dan de 'andere hoek' bepalen. Je bent dan al een stuk op weg. Mijn idee is dat dit beter werkt dan alles uit je hoofd doen.