\(
\eqalign{
& \tan (\alpha + \beta ) = \cr
& \frac{{\sin (\alpha + \beta )}}
{{\cos (\alpha + \beta )}} = \cr
& \frac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}
{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }} = \cr
& \frac{{\frac{{\sin \alpha \cos \beta }}
{{\cos \alpha \cos \beta }} + \frac{{\cos \alpha \sin \beta }}
{{\cos \alpha \cos \beta }}}}
{{\frac{{\cos \alpha \cos \beta }}
{{\cos \alpha \cos \beta }} - \frac{{\sin \alpha \sin \beta }}
{{\cos \alpha \cos \beta }}}} = \cr
& \frac{{\tan \alpha + \tan \beta }}
{{1 - \tan \alpha \tan \beta }} \cr}
\)
Voorbeeld
\(
\tan 75^\circ = \tan \left( {45^\circ + 30^\circ } \right) = \sqrt 3 + 2
\)
Verdubbelingsformule
\(
\eqalign{\tan (2\alpha ) = \frac{{2\tan \alpha }}
{{1 - \tan ^2 \alpha }}}
\)