vrijdag 8 november 2019

Naschrift

\( \eqalign{ & P_{eik} = pq^4 \cr & P_{\neg eik} = (1 - p)(1 - q)^4 \cr & P_R = \frac{{pq^4 }} {{pq^4 + (1 - p)(1 - q)^4 }} \cr & P_{q = \frac{1} {2}} = \frac{{p\left( {\frac{1} {2}} \right)^4 }} {{p\left( {\frac{1} {2}} \right)^4 + (1 - p)(1 - \left( {\frac{1} {2}} \right))^4 }} \cr & P_{q = \frac{1} {2}} = \frac{p} {{p + (1 - p)}} = p \cr} \)

woensdag 6 november 2019

Inhoud of volume

Naschrift

\( \eqalign{ & f(x) = \ln \left( {4\left( {3x - x^2 } \right)^{ - 2} } \right) \cr & f(x) = \ln (4) + \ln \left( {\left( {3x - x^2 } \right)^{ - 2} } \right) \cr & f(x) = \ln (4) - 2\ln \left( {3x - x^2 } \right) \cr & f'(x) = \frac{{ - 2}} {{3x - x^2 }} \cdot \left( {3 - 2x} \right) \cr & f'(x) = \frac{{ - 6 + 4x}} {{3x - x^2 }} \cr & f'(x) = \frac{{4x - 6}} {{3x - x^2 }} \cr} \)